LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dielectric response of hydrated water as a structural component of nanofibrillated cellulose (NFC) from different plant sources.

Photo by philldane from unsplash

The current work illuminates the interplay between nanofibrillated cellulose (NFC) films and hydrated water. The NFC films from three sources of technological importance, i.e. cotton, wood and flax, are compared.… Click to show full abstract

The current work illuminates the interplay between nanofibrillated cellulose (NFC) films and hydrated water. The NFC films from three sources of technological importance, i.e. cotton, wood and flax, are compared. It is shown that cellulose materials present slight variations in supramolecular structure depending on the plant origin. The structural differences determine both quantity and state of the water adsorbed by cellulose. Dielectric spectroscopy was employed to study the state of hydrated water as a probe of both the overall and specific marks of NFCs' structure. The measurements, carried out in the wide frequency (10-2Hz -106Hz) and temperature (123 K-293 K) ranges, revealed the formation of non-interactive water clusters at low water content. At high water content, additional states of water were identified: Water in saturated glass-forming solution and bulk. These water states were shown to be determined by the NFC's structure and morphology.

Keywords: hydrated water; water; cellulose nfc; nanofibrillated cellulose; dielectric response; plant

Journal Title: Carbohydrate polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.