LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The mechanism of Cu (II) adsorption onto 2,3-dialdehyde nano-fibrillated celluloses.

Photo from wikipedia

Nano-fibrillated celluloses (NFCs) were separated from bleached softwood kraft pulp. Through the periodate oxidation method, 2,3-dialdehyde nano-fibrillated celluloses (DNFCs) with varied aldehyde content were prepared. The high aldehyde content, large… Click to show full abstract

Nano-fibrillated celluloses (NFCs) were separated from bleached softwood kraft pulp. Through the periodate oxidation method, 2,3-dialdehyde nano-fibrillated celluloses (DNFCs) with varied aldehyde content were prepared. The high aldehyde content, large specific surface area and high surface charge density of DNFCs benefited the adsorbing of Cu (II). The adsorption kinetics and isotherms presented good correlations with the Pseudo-second-order model and Freundlich model, respectively. Both physical and chemical adsorptions existed in the Cu (II) adsorption by DNFCs, while chemisorption was the rate-limiting step. The adsorption thermodynamic parameters Gibbs free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were also investigated. This study provides theoretical support for applying DNFCs to remove metal ions from aqueous solutions.

Keywords: adsorption; adsorption onto; nano fibrillated; mechanism adsorption; dialdehyde nano; fibrillated celluloses

Journal Title: Carbohydrate polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.