Although the clinical usage of drugs administration was raising, the application of nanoparticles encapsulating the hydrophobic drugs with plummy efficiency was very scarce for atherosclerosis (AS) treatment. In this work,… Click to show full abstract
Although the clinical usage of drugs administration was raising, the application of nanoparticles encapsulating the hydrophobic drugs with plummy efficiency was very scarce for atherosclerosis (AS) treatment. In this work, a novel dual ROS-sensitive and CD44 receptors targeting amphiphilic carrier material, oligomeric hyaluronic acid-2'-[propane-2,2-diyllbls (thio)] diacetic acl-hydroxymethylferrocene (oHA-TKL-Fc), named HASF, was synthesized and characterized by 1H-NMR spectra. Then, we combined curcumin (Cur) with HASF into nano-micelles (HASF@Cur micelles) by self-assembling method. The resulting HASF@Cur micelles had the average size of 150.8 nm and zeta potential of -35.04 mV to maintain the will-defined spheroidal structure and stability. Importantly, the HASF@Cur micelles had ultrahigh entrapment efficiency (about 51.41 %). Moreover, in vitro release study, Cur release from HASF@Cur micelles was effective in the reactive oxygen species (ROS) condition, and the release rate was interrelated with the concentration of hydrogen peroxide (H2O2). Further, fluorescence imaging showed that the HASF@Cur micelles could more selective access to Raw 264.7 cells than free Cur via oHA-receptor mediated endocytosis. The MTT assay attested the safety of amphiphilic carrier material HASF. Additionally, the results of in vivo Oil red O lipid staining studies showed that the lesion area of the aorta was reduced to 47.3±3.4 % with HASF@Cur micelles, compared with the lesion area of Cur group (63.2±2.7 %), HASF@Cur micelles had the more remarkable effect in reducing lesion area (*P < 0.05). Consequently, the novel dual ROS-sensitive and CD44 receptors targeting drug delivery system would become a promising strategy for atherosclerosis.
               
Click one of the above tabs to view related content.