LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Water-based 2D printing of magnetically active cellulose derivative nanocomposites.

Photo from archive.org

The fabrication of magnetic materials typically involves expensive, non-scalable, time-consuming or toxic processes. Here we report a scalable, quick and environmentally-benign fabrication of magnetically active materials through screen printing using… Click to show full abstract

The fabrication of magnetic materials typically involves expensive, non-scalable, time-consuming or toxic processes. Here we report a scalable, quick and environmentally-benign fabrication of magnetically active materials through screen printing using mechanically flexible paper having micron-sized pores as substrates. In comparison with traditional multicomponent inks, simple aqueous dispersions comprising solely water-soluble cellulose derivatives and cobalt ferrite nanoparticles are used. Depending on the cellulosic matrix used, inks with viscosities in the 500-2.500 mPa s range were obtained for shear rates of 20-100 s-1. Patterns with line widths from 183 to 642 μm with a maximum deviation of 9 % were fabricated. The largest magnetization saturation obtained of 0.024 emu (or 0.021 emu cm-2) for the hydroxypropyl cellulose-based ink demonstrates enough magnetization for applications in areas such as actuators and sensors. This work provides novel insights towards the processing of renewable, magnetically active and mechanically flexible materials with tailored geometries which use water as the sole solvent.

Keywords: printing magnetically; based printing; water; water based; active cellulose; magnetically active

Journal Title: Carbohydrate polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.