LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties.

Photo from archive.org

Herein, multiscale nanocelluloses (NCs) were prepared and blended with fumed silica and organosilane to fabricate freeze-dried aerogels in various combinations. The cooperation of multiscale raw materials optimized the porous structures… Click to show full abstract

Herein, multiscale nanocelluloses (NCs) were prepared and blended with fumed silica and organosilane to fabricate freeze-dried aerogels in various combinations. The cooperation of multiscale raw materials optimized the porous structures of aerogels, thus improving the thermal insulation properties. The use of NCs with different characteristics endowed the resultant aerogels with distinct mechanical performance. The addition of high-aspect-ratio NCs in the composite aerogels was essential for improving the bendability. Furthermore, lower-aspect-ratio NCs helped to resist the compression deformation of the cross-linked aerogels. The functional groups on NCs made a difference in the thermal stability of the as-prepared aerogels. However, after treating at 150-350 ℃, the aerogels could maintain structural integrity and high elastic recovery rate, possessing ultralow density (7.2 kg/m3) and thermal conductivity (25.4 mW m-1 K-1). The outstanding thermal properties and controllable mechanical performance make these aerogels potential candidates in different fields such as textile and building industries.

Keywords: hybrid aerogels; nanocelluloses hybrid; multiscale nanocelluloses; thermal properties; thermal insulation

Journal Title: Carbohydrate polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.