LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anticounterfeiting and photoluminescent cellulosic papers based on fluorescent acrylic copolymer nanoparticles containing coumarin.

Photo from archive.org

Fluorescent nanoparticles are widely exploited as probes in cell tracking, drug delivery systems and high-performance security devices nowadays. Herein, we report the synthesis of novel 7-acryloxycoumarin (7-AC) through modification reaction… Click to show full abstract

Fluorescent nanoparticles are widely exploited as probes in cell tracking, drug delivery systems and high-performance security devices nowadays. Herein, we report the synthesis of novel 7-acryloxycoumarin (7-AC) through modification reaction of 7-hydroxycoumarin with acryloyl chloride and its copolymerization with methyl methacrylate and glycidyl methacrylate to produce epoxy-functionalized fluorescent polymer nanoparticles through emulsion polymerization. Chemical modification of cellulose pulp papers with the as-prepared fluorescent latex nanoparticles was also assessed. Spherical nanoparticles with average particle size of 40-93 nm and their diffusion into cellulosic fibers with excellent wetting and coating were monitored. Fluorimetery analysis demonstrated that immobilization of 7-AC into the hydrophobic acrylic copolymer substrate enhanced its emission intensity significantly with respect to its molecularly solution due to the elimination of unwanted environmental effects and non-radiative processes such as probable internal conversions. The obtained products exhibited intensified fluorescence emission with potentiality of being used in anticounterfeiting inks and security documents.

Keywords: cellulosic papers; photoluminescent cellulosic; acrylic copolymer; papers based; anticounterfeiting photoluminescent; copolymer

Journal Title: Carbohydrate polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.