LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation.

Photo from archive.org

The preparation of heteroatom doping heterojunction photocatalysts with nontoxic carbonaceous materials and simple method still remains a challenge. Herein, ternary Z-scheme C-doped graphitic carbon nitride/tungsten oxide (C-doped g-C3N4/WO3) was successfully… Click to show full abstract

The preparation of heteroatom doping heterojunction photocatalysts with nontoxic carbonaceous materials and simple method still remains a challenge. Herein, ternary Z-scheme C-doped graphitic carbon nitride/tungsten oxide (C-doped g-C3N4/WO3) was successfully fabricated via the hydrothermal impregnation with cellulose nanocrystal, high-temperature calcination, and electrostatic self-assembly with WO3 nanocuboids in turns. Benefiting from the porous structure, high specific areas (57.20 m2 g-1), C-substitution, and the formation of Z-scheme heterojunction, the resulting photocatalyst exhibited narrower band-gap, enhanced visible-light absorption and separation of charge carrier, faster interfacial charge transfer, good oxidation/reduction capacities, and thus improved the photocatalytic activity performance. As such, this investigation will provide an effective route for not only incorporating semiconductors and heteroatoms into g-C3N4 but also developing more heterojunction with markedly improved photocatalytic performance.

Keywords: c3n4 wo3; scheme doped; cellulose assisted; scheme; doped c3n4

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.