LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chitosan-alginate nanoparticles as effective oral carriers to improve the stability, bioavailability, and cytotoxicity of curcumin diethyl disuccinate.

Curcumin diethyl disuccinate (CDD) is an ester prodrug of curcumin that has better chemical stability in phosphate buffer (pH 7.4) and anticancer activities against MDA-MB-231 human breast cancer cells and… Click to show full abstract

Curcumin diethyl disuccinate (CDD) is an ester prodrug of curcumin that has better chemical stability in phosphate buffer (pH 7.4) and anticancer activities against MDA-MB-231 human breast cancer cells and Caco-2 cells than curcumin. However, a major drawback of CDD is its poor water solubility and low bioavailability in the gastrointestinal tract. To overcome these problems, a nanoformulation was developed using chitosan/alginate nanoparticles (CANPs) under the optimal condition as previously derived by statistical optimization. The CDD-loaded CANPs (CDD-CANPs) were found to exhibit good stability after exposure to simulated digestive fluids and ultraviolet light, and a sustained-release profile of CDD in the simulated digestive and body fluids. The in vitro release pattern fitted well to the Peppas-Sahlin model, indicating that the release of CDD was mainly governed by diffusion. Compared to free CDD, the CDD-CANPs showed better stability, bioaccessibility, bioavailability, cellular uptake, and cytotoxicity against HepG2 cells.

Keywords: diethyl disuccinate; bioavailability; cdd; curcumin diethyl; stability

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.