It is difficult to obtain stable multifunctional silver-containing materials that are suitable for use as wound dressings. To solve this problem, we added graphene oxide (GO) to an acetobacter culture… Click to show full abstract
It is difficult to obtain stable multifunctional silver-containing materials that are suitable for use as wound dressings. To solve this problem, we added graphene oxide (GO) to an acetobacter culture medium and used a biological blending self-growth method to fix GO onto the bacterial cellulose to form a mixed-growth film. We then used polydopamine to fix AgNPs to obtain a novel silver-based cellulose wound dressing. This composite material was characterized by infrared spectroscopy, electron microscopy, and X-ray diffractometry, and the results showed that silver nanoparticles uniformly covered the material surface, while graphene was wrapped in a layer of bacterial cellulose. This composite film was conductive and produced a weak current, and it generated heat when a voltage was applied. This allowed it to accelerate wound cell migration and promote wound healing. In addition, AgNPs immobilized on the surface released Ag+, which generated a large number of oxidizing free radicals that killed and bacteria. The in vitro cytotoxicity tests showed that the Ag-pDA/BC (rGO) composite film has excellent biocompatibility, giving it good application prospects for wound dressings.
               
Click one of the above tabs to view related content.