LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A series of carboxymethyl cellulose-based antimicrobial peptide mimics were synthesized for antimicrobial applications.

Photo from archive.org

Inspired by antimicrobial peptides (AMP) which could alleviate drug resistance pressure, antimicrobial peptide mimics (AMPMs) were designed timely. Here, carboxymethyl cellulose (CMC) -based AMPMs were constructed by introducing different diamines… Click to show full abstract

Inspired by antimicrobial peptides (AMP) which could alleviate drug resistance pressure, antimicrobial peptide mimics (AMPMs) were designed timely. Here, carboxymethyl cellulose (CMC) -based AMPMs were constructed by introducing different diamines on CMC effectively. Firstly, CMC was degraded to be oligomers with different molecular weights, followed by amination reactions with different diamines respectively. After protonation, a series of AMPMs with different structures were synthesized successfully. Their antibacterial effect has been evaluated by dynamic growth curves and microdilution method. The images snapped by the confocal laser scanning microscope and transmission electron microscope have fully proved its great lethality. And the antibacterial mechanism measured by flow cytometry analysis and zeta potential detection demonstrated that the destruction of membrane potential leads to bacteria death. The excellent blood compatibility and negligible drug resistance has also been confirmed. In addition, the synthesis method is simple and environmental-friendly.

Keywords: peptide mimics; series carboxymethyl; antimicrobial peptide; carboxymethyl cellulose

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.