Hydrogels often have poor mechanical properties which limit their application in load-bearing tissues such as muscle and cartilage. In this work, a near-infrared light-triggered stretchable thermal-sensitive hydrogel with ultra-high drug… Click to show full abstract
Hydrogels often have poor mechanical properties which limit their application in load-bearing tissues such as muscle and cartilage. In this work, a near-infrared light-triggered stretchable thermal-sensitive hydrogel with ultra-high drug loading was developed by a combination of natural polymeric nanocrystals, a network of synthetic thermo-responsive polymer, and magnetic Fe3O4 nanoparticles. The hydrogels comprise cellulose nanocrystals (CNCs) decorated with Fe3O4 nanoparticles (Fe3O4/CNCs) dispersed homogeneously in poly(N-isopropylacrylamide) (PNIPAm) networks. The composite hydrogels exhibit an extensibility of 2200%. Drug loading of vancomycin (VCM) reached a high value of 10.18 g g-1 due to the dispersion of Fe3O4/CNCs and the interactions between the CNCs and the PNIPAm network. Importantly, the hydrogels demonstrated a thermo-response triggered by NIR, with the temperature increasing from 26 to 41 °C within 60 s. The hydrogels have high biocompatibility evidenced by cell proliferation tests, illustrating that these hydrogels are promising as dressings for wound closure, and wound healing.
               
Click one of the above tabs to view related content.