LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydroxyapatite-biopolymers-ZnO composite with sustained Ceftriaxone release as a drainage system for treatment of purulent cavities.

Photo from wikipedia

Composite based on nano-sized hydroxyapatite (HA), zinc oxide (ZnO), chitosan (CS), alginate (Alg) with the function of sustained Ceftriaxone (CF) release was created as molecular sorption-aspiration drainage system (SADS), designed… Click to show full abstract

Composite based on nano-sized hydroxyapatite (HA), zinc oxide (ZnO), chitosan (CS), alginate (Alg) with the function of sustained Ceftriaxone (CF) release was created as molecular sorption-aspiration drainage system (SADS), designed for the treatment of purulent cavities of various genesis, including peritonitis. ZnO stabilizes the composite structurally, reducing the swelling by 1.5 and porosity by 1.4 times. The absorption of tryptophan (Trp) by SADS for 72 h from aqueous solution is 80%, while from PBS - 50%. The content of ZnO (15,20%) slows the CF release by 1.6 times on the first day of SADS installation and reduces the likelihood of "burst" drug release. CF release exponent of ZnO-containing composites indicates the non-Fickian diffusion kinetics. 20%ZnO-containing composite is closest to zero-order kinetics. The reduction of the concentration of E. coli microbial cells for 43% in the presence of HA-nZnO-Alg/CS -based CADS and positive therapeutic pathomorphosis were observed in vivo.

Keywords: treatment purulent; sustained ceftriaxone; drainage system; purulent cavities; ceftriaxone release; release

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.