LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of binary cress seed mucilage (CSM)/β-lactoglobulin (BLG) and ternary CSG-BLG-Ca (calcium) complexes as emulsifiers: Interfacial behavior and freeze-thawing stability.

Photo by milada_vigerova from unsplash

Protein-polysaccharide complexes often exhibit amended techno-functional characteristics when compared to their individual participant biomolecules. In this study, a complex coacervation of cress seed mucilage (CSM)/β-lactoglobulin (Blg) was used for stabilizing… Click to show full abstract

Protein-polysaccharide complexes often exhibit amended techno-functional characteristics when compared to their individual participant biomolecules. In this study, a complex coacervation of cress seed mucilage (CSM)/β-lactoglobulin (Blg) was used for stabilizing oil-in-water emulsions; they were characterized in terms of physical properties, droplet-size distribution and microstructure. Also, a comprehensive study was carried out on interfacial rheological responses and on the corresponding emulsion stability of different complexes. Freeze-thaw stability of the produced emulsions which had from mixtures of CSM-Blg was also evaluated. More than the size of droplets, interfacial rheological characteristics were associated with the properties of the adsorbed layers and with the stability of emulsions in storage. Using the CSM-Blg-Ca ultimately resulted in emulsions that proved stable against creaming, with no sign of phase separation over 3 weeks. These results show protein-polysaccharide complexes as appropriate emulsifiers that can make emulsion-based products resistant to unwanted changes caused by freeze-thawing.

Keywords: seed; cress seed; seed mucilage; blg; stability; freeze

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.