In this study, binder-free hybrid supercapacitance electrode based on N, Co co-doped porous carbon polyhedral encapsulated carbon nanofibers composites (N-Co/CNF) was prepared through pyrolyzing cobalt based zeolitic imidazolate frameworks (ZIF-67(Co))… Click to show full abstract
In this study, binder-free hybrid supercapacitance electrode based on N, Co co-doped porous carbon polyhedral encapsulated carbon nanofibers composites (N-Co/CNF) was prepared through pyrolyzing cobalt based zeolitic imidazolate frameworks (ZIF-67(Co)) incorporated electrospun cellulose nanofibers. With rational combination of the conductivity provided by cellulose derived CNF, promising porosity provided by CNF and ZIF-67(Co) derived porous carbon and uniformly dispersed metallic cobalt nanoparticles, the N-Co/CNF displayed excellent electrochemical properties. Specifically, the N-Co/CNF pyrolyzed at 800 °C possessed superior electrochemical performance in 1 M H2SO4 electrolyte, including a specific capacitance of ~433 F/g and 84% of the capacitance retention after 3000 consecutive charge-discharge cycles. This significantly exceeded the performance of cellulose derived CNF based pure carbonaceous electrode. Therefore, the present study provides a new view on the construction of high performance hybrid supercapacitance electrode which introduces renewable biomass resources like cellulose as both carbonaceous material precursors and conductive binders.
               
Click one of the above tabs to view related content.