LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling autohydrolysis conditions to produce xylan-derived fibers that modulate gut microbiota responses and metabolic outputs.

Photo by tiard from unsplash

Autohydrolysis is used for producing xylan-derived oligosaccharides from lignocellulosic biomass. Although numerous studies report optimized autohydrolysis conditions for various plants, few of these studies correlate process parameters with the resulting… Click to show full abstract

Autohydrolysis is used for producing xylan-derived oligosaccharides from lignocellulosic biomass. Although numerous studies report optimized autohydrolysis conditions for various plants, few of these studies correlate process parameters with the resulting structural properties to their impact on intestinal bacterial communities. Thus, to further clarify these relationships, beechwood xylan (BWX)-derived substrates, processed under five conditions, were fermented in vitro by human gut microbiota. Autohydrolysis reduced the mean molecular size and substitutions of BWX. Distinct fermentation kinetics were observed with differing processing of BWX substrates, which correlated with impacts on community species evenness. The relative abundances of Bacteroides, Fusicatenibacter, Bifidobacterium, and Megasphaera within the fermentations varied with processing conditions. While the total short-chain fatty acid concentrations were the same among the treatments, processing conditions varied the extent of propionate and butyrate generation. Autolysis parameters may be an important tool for optimizing beneficial effects of xylan-derived fibers on human gut microbiota structure and function.

Keywords: derived fibers; xylan derived; gut microbiota; autohydrolysis conditions; autohydrolysis

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.