LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of heterogeneously crosslinked calcium alginate networks on the encapsulation of β-carotene-loaded beads.

Photo from wikipedia

This study investigated the impact of heterogeneity of crosslinking on a range of physical and mechanical properties of calcium alginate networks formed via external gelation with 0.25-2% sodium alginate and… Click to show full abstract

This study investigated the impact of heterogeneity of crosslinking on a range of physical and mechanical properties of calcium alginate networks formed via external gelation with 0.25-2% sodium alginate and 2.5 and 5% CaCl2. Crosslinking in films with 1-2% alginate was highly heterogeneous, as indicated by their lower calcium content (35-7 mg Ca·g alginate-1) and apparent solubility (5-6%). Overall, films with 1-2% alginate showed higher resistance (tensile strength = 51-147 MPa) but lower elasticity (Elastic Modulus = 2136-10,079 MPa) than other samples more homogeneous in nature (0.5% alginate, Elastic Modulus = 1918 MPa). Beads with 0.5% alginate prevented the degradation of β-carotene 1.5 times more efficiently than 1% beads (5% CaCl2) at any of the storage temperatures studied. Therefore, it was postulated that calcium alginate networks crosslinked to a greater extent and in a more homogeneous manner showed better mechanical performance and barrier properties for encapsulation applications.

Keywords: alginate; carotene; alginate networks; calcium alginate; impact heterogeneously

Journal Title: Carbohydrate polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.