Four fractions of water-extracted Sepia esculenta ink polysaccharides (SIP) were separated by dicthylaminoethy (DEAE) cellulose chromatography. The eluted fraction with the highest yield was characterized as a sulfate-rich glycosaminoglycan named… Click to show full abstract
Four fractions of water-extracted Sepia esculenta ink polysaccharides (SIP) were separated by dicthylaminoethy (DEAE) cellulose chromatography. The eluted fraction with the highest yield was characterized as a sulfate-rich glycosaminoglycan named SIP-IV. According to the analysis of laser scattering and refractive index signals, SIP-IV was determined to be 14.4 kDa and spherical molecular conformation in salt solution. SIP-IV is composed of fucose, galactosamine, glucosamine, mannose and glucuronic acid with a molar ratio of 5.1:7.3:3.8:1:4.4, which is obviously different from reported SIPs. SIP-IV promoted yeast proliferation and intercellular antioxidant level. Based on multi-omics strategy, data of transcriptome analysis suggested that growth promotion of SIP-IV on Saccharomyces cerevisiae might be attributed to regulation of Rho protein signal transduction, nuclear autophagy and nitrogen utilization. Combined with the metabolome results, SIP-IV also re-profiled metabolism of amino acids and phospholipids in yeast cells.
               
Click one of the above tabs to view related content.