While they have many properties of interest in enology, the structure-function relationships of mannoproteins and the part played by their polysaccharide moiety are not yet well understood. Mannoproteins (MP) extracted… Click to show full abstract
While they have many properties of interest in enology, the structure-function relationships of mannoproteins and the part played by their polysaccharide moiety are not yet well understood. Mannoproteins (MP) extracted with β-glucanase from a laboratory yeast strain (WT), two of its mutants (Mnn2 with unbranched N-glycosylated chains and Mnn4 without mannosyl-phosphorylation), and an enological strain (Com) were purified and thoroughly characterized. The protein moiety of the four MPs had the same amino acid composition. Glycosyl-linkage and net charge analyses confirmed the expected differences in mutant strain MPs. MP-Com had the highest mannose/glucose ratio followed by MP-WT/MP-Mnn4, and MP-Mnn2 (13.5 > 5.6 ≈ 5.2 > 2.2). The molar mass dependencies of Rg, Rh, and [η], determined through HPSEC-MALLS-QELS-Viscosimetry, revealed specific conformational properties of mannoproteins related to their nature of highly branched copolymers with two branching levels. It also clearly showed structural differences between MP-Com, MP-WT/Mnn4, and MP Mnn2, and differences between two populations within the four mannoproteins.
               
Click one of the above tabs to view related content.