LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of oral curcumin based on pH-responsive transmembrane peptide-cyclodextrin derivative nanoparticles for hepatoma.

Photo by wulcan from unsplash

Herein, a pH-responsive cyclodextrin derivative (R6H4-CMβCD) with cell-penetrating ability was successfully synthesized, and curcumin-loaded nanoparticles (R6H4-CMβCD@CUR NPs, RCCNPs) were developed to improve its efficacy in hepatoma. RCCNPs could improve the… Click to show full abstract

Herein, a pH-responsive cyclodextrin derivative (R6H4-CMβCD) with cell-penetrating ability was successfully synthesized, and curcumin-loaded nanoparticles (R6H4-CMβCD@CUR NPs, RCCNPs) were developed to improve its efficacy in hepatoma. RCCNPs could improve the cell uptake compared with CMβCD@CUR NPs (CCNPs) and were internalized into cells mainly through endocytosis mediated by reticulin and macropinocytosis. Furthermore, the accumulation of RCCNPs in hepatoma cells at pH 6.4 was higher than that at pH 7.4, indicating a pH-responsive uptake. Additionally, RCCNPs could escape from the lysosomes via the "proton sponge effect", and a high apoptosis rate was detected. Importantly, in vivo experiments revealed that orally administered RCCNPs could exert excellent anti-cancer effects in tumor-bearing mice. Hematoxylin-eosin staining did not show significant histological changes in the major organs. Thus, our findings indicate the potential of R6H4-CMβCD as a nanopharmaceutical material, and RCCNPs as an effective delivery system for oral curcumin in cancer management.

Keywords: development oral; rccnps; rccnps could; oral curcumin; cyclodextrin derivative

Journal Title: Carbohydrate polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.