LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel, recyclable Brønsted acidic deep eutectic solvent for mild fractionation of hemicelluloses.

Photo by enginakyurt from unsplash

Acidic deep eutectic solvents (DESs) are promising media for lignin valorization and cellulose conversion due to their good ability in efficient deconstruction of plant cell wall. However, hemicellulose extraction from… Click to show full abstract

Acidic deep eutectic solvents (DESs) are promising media for lignin valorization and cellulose conversion due to their good ability in efficient deconstruction of plant cell wall. However, hemicellulose extraction from lignocellulose using acidic DESs remains a challenge. Herein, novel and green Brønsted acidic DESs (BDESs) were synthesized from natural organic acids and common polyols and successively adopted to deconstruct corncob for mild fractionation of hemicelluloses. Oxalic acid (OA)-based BDESs were preferred for corncob processing due to the high solubility of xylan. The results revealed that the suitable acidity of DESs and mild temperature effectively avoided the over-degradation of hemicelluloses. The chemical composition and structural features of the recovered hemicelluloses were investigated systematically. Moreover, after ethylene glycol (EG)-OA BDES was recycled and reused three times, the extraction still resulted in a satisfactory hemicellulose yield. The novel and eco-friendly processing offers a practical and sustainable route for hemicellulose extraction in acidic condition.

Keywords: dess; nsted acidic; fractionation hemicelluloses; acidic deep; deep eutectic; mild fractionation

Journal Title: Carbohydrate polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.