LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study.

Photo from wikipedia

In this study, a series of Zirconium-based MOF and chitosan composites (MOF-808/chitosan) were synthesized as efficient adsorbent for Cr(VI) ions elimination from aqueous solution. MOF-808/chitosan structure and morphology was characterized… Click to show full abstract

In this study, a series of Zirconium-based MOF and chitosan composites (MOF-808/chitosan) were synthesized as efficient adsorbent for Cr(VI) ions elimination from aqueous solution. MOF-808/chitosan structure and morphology was characterized by FE-SEM, EDX, XRD, BET, zeta potential analysis, FT-IR, XPS techniques. The kinetic studies ascertained that Cr(VI) adsorption over MOF-808/chitosan followed pseudo-second-order kinetic model. The adsorption isotherms fitted the Langmuir isotherm model, implying on homogeneously adsorption of Cr(VI) on the surface of MOF-808/chitosan. According to the Langmuir model, the maximum capacity was obtained to be 320.0 mg/g at pH 5. Thermodynamic investigation proposed spontaneous (ΔG° < 0), disordered (ΔS° > 0) and endothermic (ΔH° > 0) for adsorption process. Besides, MOF-808/chitosan displayed an appropriate reusability for the elimination of Cr(VI) ions from their aqueous solutions for six successive cycles. DFT study of the adsorption process displayed and confirmed the role of hydrogen bonding and electrostatic attraction simultaneously.

Keywords: dft study; aqueous solution; adsorption; 808 chitosan; mof 808

Journal Title: Carbohydrate polymers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.