LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and KNS-ML from aqueous seaweed extract.

Photo from wikipedia

This paper demonstrates an integrated zero liquid discharge (ZLD) process for time-dependent recovery of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and potassium, nitrogen and sulphur rich mother liquor (KNS-ML) -… Click to show full abstract

This paper demonstrates an integrated zero liquid discharge (ZLD) process for time-dependent recovery of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and potassium, nitrogen and sulphur rich mother liquor (KNS-ML) - manure from agar/agarose containing seaweed aqueous solution using transition metal-free KHSO4 as an eco-friendly and reusable catalyst. The selectivity of HMF is higher at 115 °C in 3 h and favorable to LA in 6 h in autoclave conditions. The proposed concept could be fine-tuned for the selective production of 5-HMF (up to 91% yield) or levulinic acid (56% yield) in the presence of the KHSO4 catalyst. We have also achieved recyclability of KHSO4 up to nine (09) cycles and the gram-scale reaction has been demonstrated. The (KNS-ML) obtained after nine cycles followed by neutralization with ammonia solution utilized for manure makes the process zero-liquid discharge and more cost-effective. The efficacy of the KNS-ML after nine cycles has been tested on groundnut plants.

Keywords: hmf levulinic; hydroxymethyl furfural; levulinic acid; process; hmf; furfural hmf

Journal Title: Carbohydrate research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.