Bacterial glycosyltransferases are potential targets for the development of novel antibiotics and anti-virulence agents. We report a novel inhibitor design for the retaining α-1,4-galactosyltransferase LgtC from Neisseria meningitidis. Our design… Click to show full abstract
Bacterial glycosyltransferases are potential targets for the development of novel antibiotics and anti-virulence agents. We report a novel inhibitor design for the retaining α-1,4-galactosyltransferase LgtC from Neisseria meningitidis. Our design is based on the installation of an electrophilic warhead on the LgtC acceptor substrate and targeted at a non-catalytic cysteine residue in the LgtC active site. We have successfully synthesised two prototype inhibitors in four steps from lactulose. The key step in our synthesis is a Heyns rearrangement, during which we observed the formation of a hitherto unknown side product. While both lactosamine derivatives behaved as moderate inhibitors of LgtC, they also retained residual substrate activity. These results suggest that in contrast to our original design, these inhibitors do not act via a covalent mode of action, but are most likely non-covalent inhibitors.
               
Click one of the above tabs to view related content.