LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional non-Pt ternary catalyst for the hydrogen oxidation and oxygen evolution reactions in reversal-tolerant anode

Photo from wikipedia

Abstract The reversal-tolerant anode (RTA) has been introduced to mitigate the fatal anode degradation by cell voltage reversal under hydrogen fuel starvation in fuel cell electric vehicles (FCEVs). The RTA… Click to show full abstract

Abstract The reversal-tolerant anode (RTA) has been introduced to mitigate the fatal anode degradation by cell voltage reversal under hydrogen fuel starvation in fuel cell electric vehicles (FCEVs). The RTA employs an oxygen evolution reaction (OER) catalyst in the anode to boost water electrolysis rather than carbon corrosion under fuel starvation. Graphitic carbon-supported IrRu4Y0.5 exhibits outstanding performances for hydrogen oxidation reaction and OER. In single cell test, the IrRu4Y0.5 delivers ~ 21% better performance and longer RTA durability (~ 64 min) than Pt/C catalyst. It is anticipated that IrRuY-based alloy catalysts could replace high-priced Pt-based catalysts as multifunctional RTA for FCEVs.

Keywords: reversal tolerant; catalyst; hydrogen oxidation; oxygen evolution; tolerant anode

Journal Title: Catalysis Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.