LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial, temporal and quantitative assessment of catalyst leaching in continuous flow

Photo by thisisengineering from unsplash

Abstract Catalyst leaching is a major impediment to the development of commercially-viable processes conducted in a liquid-phase. To date, there is no reliable technique that can accurately identify the extent… Click to show full abstract

Abstract Catalyst leaching is a major impediment to the development of commercially-viable processes conducted in a liquid-phase. To date, there is no reliable technique that can accurately identify the extent and dynamics of the leaching process in a quantitative manner. In this work, a tandem flow-reactor system has been developed, which allowed us to distinguish between surface-catalyzed reactions from those occurring in solution by comparing%conversion at the exit of each reactor ( S1 , S2 ) corresponding to predominance of heterogeneous/homogeneous reactions (spatial) and two different residence times (temporal). A multiscale model is subsequently established to quantify the two types of reaction rate and simulate the catalyst leaching from a cross-coupling catalyst, PdEncatâ„¢ 30; including: (1) a multi-particle sizes model for catalyst scale; and (2) a dispersion model for reactor scale. The results show that catalyst leaching occurs via more than one process, and that the homogeneous Pd-catalyst (leached from the immobilized catalyst and dissolved in the flow) dominates the reaction and possesses a much higher activity than the heterogeneous (immobilized) Pd-catalyst. Additionally, the change of leached Pd stream inside reactors can be predicted along with the axial direction and the reaction time through the reactor-scale dispersion model.

Keywords: quantitative assessment; spatial temporal; catalyst leaching; temporal quantitative; catalyst; reactor

Journal Title: Catalysis Today
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.