LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts

Photo by austriannationallibrary from unsplash

Abstract Hydrogen production through autothermal reforming (ATR) of hydrocarbon fuels (ethanol, methane) over Ni-based catalysts was studied with a special focus on the role of metal-support interaction. The strength of… Click to show full abstract

Abstract Hydrogen production through autothermal reforming (ATR) of hydrocarbon fuels (ethanol, methane) over Ni-based catalysts was studied with a special focus on the role of metal-support interaction. The strength of Ni-support interaction was regulated by means of tailored modification of cerium oxide and aluminum oxide supports. The electronic, redox and structural properties of pre- and post-reaction Ni/Ce1-xMxOy and Ni/Ce1-xMxOy/Al2O3 (M = Zr, Gd, La, Mg) catalysts were studied in detail by TG-DTA, BET, XRD, HRTEM-EDX, HAADF-STEM, TPR, XPS and UV–vis DRS methods. It was found that the mode of Ni-support interaction controls the state, dispersion, and reducibility of Ni active component, and consequently, catalyst performance in ATR of hydrocarbon fuels. Among the tested modifiers (M = Zr, Gd, La, Mg), La has a more pronounced positive effect on the state and functionality of Ni/Ce1-xMxOy and Ni/Ce1-xMxOy/Al2O3 catalysts. The introduction of La as a modifier in the support composition enhances the metal-support interaction, which leads to a diminution of Nin+ reducibility. On the other hand, the improvement of the Ni dispersion and catalyst stability under the ATR reactions is achieved. The addition of a Pd-promoter makes it possible to optimize the reducibility of Nin+ strongly interacting with the support and provides the ability of Ni catalysts to the self-activation. The optimal support composition for Ni nanoparticles was designed that provides hydrogen yields which are close to the thermodynamic equilibrium values: ∼55% (Ce0.8La0.2O1.9, АTP C2H5OH at 600оC) and ∼65% (30Ce0.2Zr0.2La0.6O1.7/Al2O3, АTP CH4 at 850оC).

Keywords: hydrogen production; ce1 xmxoy; based catalysts; hydrocarbon; support; support interaction

Journal Title: Catalysis Today
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.