LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanodiamonds @ N, P co-modified mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene

Photo by eiskonen from unsplash

Abstract A robust monolith catalyst has been fabricated involving the combination of nanodiamonds (NDs) and mesoporous carbon modified by nitrogen and phosphorus (ND@NMC-xP, x = amount of ammonium biphosphate) on… Click to show full abstract

Abstract A robust monolith catalyst has been fabricated involving the combination of nanodiamonds (NDs) and mesoporous carbon modified by nitrogen and phosphorus (ND@NMC-xP, x = amount of ammonium biphosphate) on a β-SiC foam. The [email protected] P/SiC monolith catalyst with 0.2 at.% of P elements exhibits an excellent catalytic performance for oxidative dehydrogenation of ethylbenzene (EB), delivering 90.2% selectivity to styrene (ST) up to 32.6% conversion. The specific conversion rate of monolith catalyst based on the unit weight of NDs and mesoporous carbons (25.3 mmol gact. phase−1 h−1) is 3-fold higher than that of unsupported NDs. The role of nitrogen is believed to enhance the density of active sites and thus offering a high EB conversion, whereas the addition of phosphorus inhibits deep oxidation of EB to carbon oxides and therefore for a high selectivity to ST. The monolith catalyst not only contributes a high utilization efficiency of NDs but also mitigates the high pressure drop across the catalytic bed, which is potentially suitable for a real industrial process.

Keywords: dehydrogenation ethylbenzene; monolith catalyst; sic foam; oxidative dehydrogenation; mesoporous carbon; carbon

Journal Title: Catalysis Today
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.