LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective adsorption of toluene and n-hexane binary mixture from aqueous solution on zeolite ZSM-5: Evaluation of competitive behavior between aliphatic and aromatic compounds

Photo from wikipedia

Abstract In this study, high silica ZSM-5 was selected as an adsorbent for the removal of toluene (TOL) and n-hexane (HEX) binary mixtures from aqueous solution over a wide range… Click to show full abstract

Abstract In this study, high silica ZSM-5 was selected as an adsorbent for the removal of toluene (TOL) and n-hexane (HEX) binary mixtures from aqueous solution over a wide range of concentrations. In comparison with the single component systems, the binary mixture induced to a selective adsorption by the ZSM-5 zeolite. As a matter of fact, a selective adsorption, described by a competitive dual site Langmuir adsorption isotherm, is revealed where alkane compound is preferred to the aromatic one. Results from adsorption isotherm were related to the structural answer of the ZSM-5 framework as a function of a HEX-TOL equimolar binary mixture adsorption. Rietveld refinements provided information about the relative position of both molecules within the ZSM-5, and on the intermolecular distances between the adsorption sites of HEX and TOL. Residuals of electron density calculated by mean of delta Fourier maps indicated the presence of both guest molecules but with a clear indication of preferential towards n-hexane, and a clear differential adsorption site distribution. The occurrence of host-guest interactions in the narrow intracrystalline micropores between the solid catalyst and embedded molecules have been revealed.

Keywords: adsorption; hexane; binary mixture; selective adsorption; aqueous solution

Journal Title: Catalysis Today
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.