Abstract The formation and evolution of methoxy ad-species in MFI zeotypes after CH4 exposure, and during temperature programmed desorption of CH3OH have been investigated in situ with diffuse reflectance Fourier… Click to show full abstract
Abstract The formation and evolution of methoxy ad-species in MFI zeotypes after CH4 exposure, and during temperature programmed desorption of CH3OH have been investigated in situ with diffuse reflectance Fourier transform infrared spectroscopy. Fe and/or Al atoms have been incorporated in framework position prior to crystallization and the influence of the resulting acidity on CH4 activation and CH3OH desorption has been examined. The results show that the presence of Fe promotes CH4 activation and that methanol is more strongly bound to the zeotype in the presence of Al. Because CH4 activation and CH3OH extraction are two of the key steps in the direct conversion of methane to methanol, our results indicate that Al-free zeotypes containing Fe atoms pinpoint important catalyst design parameters needed for this reaction.
               
Click one of the above tabs to view related content.