LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological evaluation of a halogenated triterpenoid, 2α-bromo-dihydrobelulonic acid as inhibitor of human topoisomerase IIα and HeLa cell proliferation.

Photo from wikipedia

BACKGROUND The pentacyclic lupane-type (6-6-6-6-5 type) triterpenoid, Betulinic acid (BA) is a potent inhibitor of topoisomerases and is of immense interest as anticancer drugs. However, the compound being highly lipophilic,… Click to show full abstract

BACKGROUND The pentacyclic lupane-type (6-6-6-6-5 type) triterpenoid, Betulinic acid (BA) is a potent inhibitor of topoisomerases and is of immense interest as anticancer drugs. However, the compound being highly lipophilic, has limited in vivo uptake capacity. BA derivatives with halogen substituent at C-2 have improved membrane permeability and cytotoxicity against cancer cells. AIM The halogenated triterpenoid, 2α-bromo-dihydrobetulonic acid (B1) was synthesized from betulinic acid (BA) isolated from Bischofia javanica. Aim of the study was to determine whether B1 could act as a more efficient inhibitor of Topo IIα activity and HeLa cell proliferation, in comparison to BA. RESULT B1 displayed efficient inhibition of DNA relaxation activity of topoisomerase IIα and the inhibitory effect was markedly improved upon pre-incubation of the compound with enzyme. Topoisomerase IIα inhibition by B1 was relieved in presence of increasing concentrations of DNA suggesting the compound as a reversible catalytic inhibitor. Subsequent UV and fluorescence spectroscopy studies indicated that B1 interacts and intercalates with DNA at concentrations signicantly greater than that required for topoisomerase IIα inhibition. The compound showed cytotoxic activity against HeLa cells with significantly lower IC50 value (7.5 μM) as compared to that of BA (30 μM) and had very low damaging/cytotoxic effect on normal cells. Treatment of B1 impaired HeLa cell proliferation by inducing Go-G1 arrest through lowered expression of cyclin D1 and PCNA polypeptides, and enhanced expression of p21. B1 treatment also increased the accumulation of early and late apoptotic cells in a concentration dependent manner as indicated by annexin V-FITC/PI binding assay.

Keywords: hela cell; inhibitor; cell proliferation; topoisomerase; acid

Journal Title: Chemico-biological interactions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.