LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The balance between induction and inhibition of mevalonate pathway regulates cancer suppression by statins: A review of molecular mechanisms.

Photo from wikipedia

Statins are widely used drugs for their role in decreasing cholesterol in hypercholesterolemic patients. Statins through inhibition of Hydroxy Methyl Glutaryl-CoA Reductase (HMGCR), the main enzyme of the cholesterol biosynthesis… Click to show full abstract

Statins are widely used drugs for their role in decreasing cholesterol in hypercholesterolemic patients. Statins through inhibition of Hydroxy Methyl Glutaryl-CoA Reductase (HMGCR), the main enzyme of the cholesterol biosynthesis pathway, inhibit mevalonate pathway that provides isoprenoids for prenylation of different proteins such as Ras superfamily which has an essential role in cancer developing. Inhibition of the mevalonate/isoprenoid pathway is the cause of the cholesterol independent effects of statins or pleotropic effects. Depending on their penetrance into the extra-hepatic cells, statins have different effects on mevalonate/isoprenoid pathway. Lipophilic statins diffuse into all cells and hydrophilic ones use a variety of membrane transporters to gain access to cells other than hepatocytes. It has been suggested that the lower accessibility of statins for extra-hepatic tissues may result in the compensatory induction of mevalonate/isoprenoid pathway and so cancer developing. However, most of the population-based studies have demonstrated that statins have no effect on cancer developing, even decrease the risk of different types of cancer. In this review we focus on the cancer developing "potentials" and the anti-cancer "activities" of statins regarding the effects of statins on mevalonate/isoprenoid pathway in the liver and extra-hepatic tissues.

Keywords: cancer developing; inhibition mevalonate; mevalonate pathway; mevalonate isoprenoid; pathway; cancer

Journal Title: Chemico-biological interactions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.