LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway.

Photo from wikipedia

Carnosic acid (CA), an important bioactive phenolic diterpene mainly found in labiate plants, exerts various biological functions, including antioxidant, anti-inflammatory, antitumor, and neuroprotective activities. In the present study, we proved… Click to show full abstract

Carnosic acid (CA), an important bioactive phenolic diterpene mainly found in labiate plants, exerts various biological functions, including antioxidant, anti-inflammatory, antitumor, and neuroprotective activities. In the present study, we proved the deleterious effects of CA against hepatocellular carcinoma (HCC) in both in vitro and in vivo models. In vitro, CA significantly decreased cell viability, inhibited cell proliferation and migration, enhanced apoptosis, and increased caspase-3, -8, and -9 activities in HepG2 and SMMC-7721 cells. Specifically, CA led to a decreased mitochondrial membrane potential (MMP) and increases in intracellular reactive oxygen species (ROS) levels and apoptosis-related protein expression. Pre-incubation of HCC cells with N-Acetyl-l-cysteine (NAC), a ROS inhibitor, strongly suppressed CA-induced apoptotic phenomena, including reduced cell viability, excessive ROS levels, MMP decreases, and abnormal protein expression, suggesting an association of CA-induced apoptosis with oxidative stress-mediated mitochondrial pathways. In HepG2-and SMMC-7721-xenograft tumor mouse models, treatment with CA inhibited tumor growth and modulated apoptosis-related protein expression, confirming the anti-HCC effects of this chemical. Moreover, the CA-mediated anti-HCC effects associated with oxidative stress provide experimental evidence to support the potential use of CA as a drug therapy for HCC.

Keywords: hepatocellular carcinoma; hcc; mediated mitochondrial; ros; carnosic acid

Journal Title: Chemico-biological interactions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.