LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidized phospholipids in Doxorubicin-induced cardiotoxicity.

Photo from archive.org

Doxorubicin (Dox), a widely used chemotherapy drug, can also cause cardiotoxic effects leading to heart failure. The excessive oxidative stress caused by Dox results in the modification of a variety… Click to show full abstract

Doxorubicin (Dox), a widely used chemotherapy drug, can also cause cardiotoxic effects leading to heart failure. The excessive oxidative stress caused by Dox results in the modification of a variety of cellular molecules, including phospholipids. In cardiomyocytes, Dox increases oxidation of a species of phospholipids, phosphatidylcholine, which has been associated with increased cell death. Oxidized phospholipids (Ox-PL) are involved in development and progression of various pathologies, including atherosclerosis, thrombosis, and tissue inflammation. Moreover, Ox-PL and excess iron are associated with ferroptosis, a form of regulated cell death. Neutralizing Ox-PL increases resistance to ischemia-reperfusion injuries which is linked to preservation of the mitochondrial membrane potential. This review aims to discuss the potential role of Ox-PL in Dox-induced pathology and supports the notion that a better understanding of the field could point to new strategies to prevent cardiotoxicity.

Keywords: oxidized phospholipids; doxorubicin induced; induced cardiotoxicity; phospholipids doxorubicin; doxorubicin

Journal Title: Chemico-biological interactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.