LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protective effects of 18β-glycyrrhetinic acid on pulmonary arterial hypertension via regulation of Rho A/Rho kinsase pathway.

Photo by mufidpwt from unsplash

PURPOSE Excessive proliferation, migration and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs) are the basis for the development of pulmonary vascular remodeling, and it is the driving force for… Click to show full abstract

PURPOSE Excessive proliferation, migration and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs) are the basis for the development of pulmonary vascular remodeling, and it is the driving force for pulmonary arterial hypertension (PAH). 18β-glycyrrhetinic acid (18β-GA) is the main active substance extracted from Chinese herbal medicine licorice, with outstanding anti-inflammatory, anti-oxidation and anti-proliferative effects. Our team found in previous studies that 18β-GA has protective effects on monocrotaline-induced PAH in rats. However, the anti-angiogenic effect of 18β-GA on PAH remains unclear. Therefore, in order to further investigate whether the beneficial effects of 18β-GA on PAH are related to its antiproliferative effect, we conducted experiments in vivo and in vitro. METHODS AND RESULTS In vivo, 18β-GA relieved mean pulmonary arterial pressure, right ventricular systolic pressure, and right ventricular hypertrophy index, improving pulmonary remodeling. In vitro, 18β-GA significantly inhibited PDGF-BB-induced proliferation and DNA synthesis of HPASMCs, blocking the progression of G0/G1 to S phase of the cell cycle. Furthermore, after treatment with 18β-GA, the expression of Rho A, ROCK1, ROCK2 was decreased and ROCK activity was inhibited in HPASMC. In addition, 18β-GA also attenuated PDGF-induced changes in p27kip1, Bax and Bcl-2. CONCLUSIONS In summary, these results indicate that 18β-GA regulates the activity of RhoA-ROCK signaling pathway, inhibits the proliferation of HPASMCs, and has potential value in the treatment of PAH.

Keywords: glycyrrhetinic acid; arterial hypertension; pulmonary arterial; rho; protective effects

Journal Title: Chemico-biological interactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.