Di-n-butyl phthalate (DBP) is a pollutant that is widely present in the environment. We have previously demonstrated that maternal exposure to DBP resulted in renal fibrosis in offspring, but the… Click to show full abstract
Di-n-butyl phthalate (DBP) is a pollutant that is widely present in the environment. We have previously demonstrated that maternal exposure to DBP resulted in renal fibrosis in offspring, but the underlying mechanism was not well elucidated. Therefore, the current study aims to understand the underlying molecular mechanisms in these sex-specific developmental alterations. Here, we use RNA-seq analysis to explore the underlying molecular mechanisms of DBP-associated renal fibrosis. Pregnant rats received DBP orally at a dose of 850 mg/kg BW/day during gestational days 14-18. Upregulated autophagy in renal tubules in offspring was confirmed in the DBP-treated group via accessing LC3Ⅱ/Ⅰ protein expression. Increased expression of the HhIP gene was found in the DBP-treated group via RNA-seq analysis. Immunohistochemistry (IHC) staining and Western blot analysis confirmed increased expression of HhIP protein and inhibited hedgehog signaling. Increased HhIP expression further leaded to impaired activation of hedgehog signaling, which is critical for normal embryonic development. Additional in vitro experiments on renal tubular cells suggest that inactivation of hedgehog signaling induced autophagy in renal tubular cells. Taken together, our findings show that maternal exposure to DBP induced autophagy through regulation of hedgehog signaling via overexpression of HhIP in foetal renal tubular cells, which may be essential for renal fibrosis development.
               
Click one of the above tabs to view related content.