LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells.

Photo from wikipedia

Artesunate is a kind of derivative of artemisinin, which possesses potent anti-cancer effect in addition to its anti-malarial property. And autophagy was a highly conserved process, exerting a double-edged effect… Click to show full abstract

Artesunate is a kind of derivative of artemisinin, which possesses potent anti-cancer effect in addition to its anti-malarial property. And autophagy was a highly conserved process, exerting a double-edged effect in cancer cell survival. Besides, apoptosis is a programmed cell death program, crucial to cell homeostasis. However, the relations between autophagy and apoptosis, and the role of artesunate in this interaction have not been elucidated in bladder cancer. In present study, we used human bladder cancer cells (T24 and EJ cell lines) to investigate that how artesunate would influence autophagy and apoptosis processes. We found that artesunate could inhibit the viability, proliferation and migration of bladder cancer cells, as well as induce autophagy in a time and dose dependent manner, in addition, the artesunate induced autophagy subsequently activated cells apoptosis. Furthermore, we pretreated T24 and EJ cells with 3-Methyladenine or Rapamycin to inhibit or promote autophagy, respectively, leading to inhibited or increased apoptosis. Moreover, pretreatment of these cell lines with Acadesine or Dorsomorphin to activate or inhibit the AMPK-mTOR-ULK1 pathway, respectively, also resulting in promotion or suppression in both autophagy and apoptosis. In the upstream, ROS upregulation triggered by ART initiated AMPK-mTOR-ULK1 axis. However, this initiative effect of ROS can be reversed by N-Acetyl-l-cysteine. Therefore, this study indicated that Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 pathway in human bladder cancer cells.

Keywords: bladder cancer; apoptosis; ampk mtor; cancer cells; cancer

Journal Title: Chemico-biological interactions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.