As the sixth most prevalent cancer, liver cancer has been reported as the second cause of cancer-induced deaths globally. Lysionotin, a flavonoid compound widely distributed in Lysionotus pauciflorus Maxim, has… Click to show full abstract
As the sixth most prevalent cancer, liver cancer has been reported as the second cause of cancer-induced deaths globally. Lysionotin, a flavonoid compound widely distributed in Lysionotus pauciflorus Maxim, has attracted considerable attention due to its multiple biological activities. The present study analyzes the anti-liver cancer effects of lysionotin in cell and mouse models. In HepG2 and SMMC-7721 cells, lysionotin significantly reduced the viability of cells, inhibited cell proliferation and migration, enhanced cell apoptosis, promoted the increase of intracellular reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential (MMP), and alternated the content of apoptosis-related proteins. In HepG2-and SMMC-7721-xenograft tumor mouse models, lysionotin inhibited tumor growth, reduced the expression levels of anti-apoptotic proteins and enhanced the expression levels of pro-apoptotic proteins in tumor tissues. Additionally, the pre-treatment of Ac-DEVD-CHO, an inhibitor of caspase-3, strongly restored the low cell viability, the enhanced apoptosis rate, the dissipation of MMP caused by lysionotin exposure, as well as prevented the lysionotin-caused enhancement on expressions of apoptosis related proteins, especially cleaved poly (ADP-ribose) polymerase, Fas Ligand, cleaved caspase-3 and Bax in both HepG2 and SMMC-7721 cells. Altogether, lysionotin showed significant anti-liver cancer effects related to caspase-3 mediated mitochondrial apoptosis.
               
Click one of the above tabs to view related content.