LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, synthesis, and antitumor activity of PLGA nanoparticles incorporating a discovered benzimidazole derivative as EZH2 inhibitor.

Photo by robbie36 from unsplash

PURPOSE Targeting enhancer of zeste homolog 2 (EZH2) can represent a hopeful strategy for oncotherapy. Also, the use of PLGA-based nanoparticles as a novel and rate-controlling carrier system was of… Click to show full abstract

PURPOSE Targeting enhancer of zeste homolog 2 (EZH2) can represent a hopeful strategy for oncotherapy. Also, the use of PLGA-based nanoparticles as a novel and rate-controlling carrier system was of our concern. METHODS Benzimidazole derivatives were synthesized, and their structures were clarified. In vitro antitumor activity was evaluated. Then, a modeling study was performed to investigate the ability of the most active compounds to recognize EZH2 active sites. Compound 30 (Drug) was selected to conduct pre-formulation studies and then it was incorporated into polymeric PLGA nanoparticles (NPs). NPs were then fully characterized to select an optimized formula (NP4) that subjected to further evaluation regarding antitumor activity and protein expression levels of EZH2 and EpCAM. RESULTS The results showed the antitumor activity of some synthesized derivatives. Docking outcomes demonstrated that Compound 30 was able to identify EZH2 active sites. NP4 exhibited promising findings and proved to keep the antitumor activity of Compound 30. HEPG-2 was the most sensitive for both Drug and NP4. Protein analysis indicated that Drug and NP4 had targeted EZH2 and the downstream signaling pathway to decline of EpCAM expression. CONCLUSIONS Targeting EZH2 by Compound 30 has potential use in the treatment of cancer especially hepatocellular carcinoma.

Keywords: plga nanoparticles; activity; ezh2; antitumor activity

Journal Title: Chemico-biological interactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.