LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells.

Photo from archive.org

The toxicity of hybrid nanoparticles, consisting of non-toxic components, zirconium dioxide nanoparticles (ZrO2 NPs), and caffeic acid (CA), was examined against four different cell lines (HTR-8 SV/Neo, JEG-3, JAR, and… Click to show full abstract

The toxicity of hybrid nanoparticles, consisting of non-toxic components, zirconium dioxide nanoparticles (ZrO2 NPs), and caffeic acid (CA), was examined against four different cell lines (HTR-8 SV/Neo, JEG-3, JAR, and HeLa). Stable aqueous ZrO2 sol, synthesized by forced hydrolysis, consists of 3-4 nm in size primary particles organized in 30-60 nm in size snowflake-like particles, as determined by transmission electron microscopy and direct light scattering measurements. The surface modification of ZrO2 NPs with CA leads to the formation of an interfacial charge transfer (ICT) complex followed by the appearance of absorption in the visible spectral range. The spectroscopic observations are complemented with the density functional theory calculations using a cluster model. The ZrO2 NPs and CA are non-toxic against four different cell lines in investigated concentration range. Also, ZrO2 NPs promote the proliferation of HTR-8 SV/Neo, JAR, and HeLa cells. On the other hand, hybrid ZrO2/CA NPs induced a significant reduction of the viability of the JEG-3 cells (39 %) for the high concentration of components (1.6 mM ZrO2 and 0.4 mM CA).

Keywords: caffeic acid; zro2 nanoparticles; surface modified; zro2; modified zro2; zro2 nps

Journal Title: Chemico-biological interactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.