LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles.

Photo by chuttersnap from unsplash

The use of proximity-dependent biotinylation approaches combined with mass spectrometry (e.g. BioID and APEX) has revolutionized the study of protein-protein interactions and organellar proteomics. These powerful techniques are based on… Click to show full abstract

The use of proximity-dependent biotinylation approaches combined with mass spectrometry (e.g. BioID and APEX) has revolutionized the study of protein-protein interactions and organellar proteomics. These powerful techniques are based on the fusion of an enzyme (e.g. a biotin ligase or peroxidase) to a 'bait' protein of interest, which is then expressed in a relevant biological setting. Addition of enzyme substrate enables covalent biotin labeling of proteins in the vicinity of the bait in vivo. These approaches thus allow for the capture and identification of 'neighborhood' proteins in the context of a living cell, and provide data that are complementary to more established techniques such as fractionation or affinity purification. As compared to standard affinity-based purification approaches, proximity-dependent biotinylation (PDB) can help to: first, identify interactions with and amongst membrane proteins, and other polypeptide classes that are less amenable to study by standard pulldown techniques; second, enrich for transient and/or low affinity interactions that are not readily captured using affinity purification approaches; third, avoid post-lysis artefacts associated with standard biochemical purification experiments and; fourth, provide deep insight into the organization of membrane-less organelles and other subcellular structures that cannot be easily isolated or purified. Given the increasing use of these techniques to answer a variety of different types of biological questions, it is important to understand how best to design PDB-MS experiments, what type of data they generate, and how to analyze and interpret the results.

Keywords: protein; dependent biotinylation; neighborhood; proximity dependent

Journal Title: Current opinion in chemical biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.