LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel crustacean hyperglycemic hormone (CHH) from the mud crab Scylla paramamosain regulating carbohydrate metabolism.

Photo by foodistika from unsplash

Crustacean hyperglycemic hormone (CHH) plays a crucial role in regulating carbohydrate metabolism in crustaceans. In this study, a new cDNA encoding type I CHH peptide, termed Sp-CHH3, was isolated from… Click to show full abstract

Crustacean hyperglycemic hormone (CHH) plays a crucial role in regulating carbohydrate metabolism in crustaceans. In this study, a new cDNA encoding type I CHH peptide, termed Sp-CHH3, was isolated from the mud crab Scylla paramamosain and its potential functions were investigated. The full length cDNA of Sp-CHH3 was identified as encoding a 127-aa precursor composed of a 27-aa signal peptide, a 23-aa CHH precursor-related peptide and a 75-aa mature peptide with a typical motif of CHH. Phylogenic analysis suggested that, Sp-CHH3 is a previously unreported CHH from S. paramamosain. Tissue distribution analysis showed that Sp-CHH3 was mainly expressed in the eyestalk ganglia, thoracic ganglia, stomach and the ovary. A RNA interference experiments showed that after injection of Sp-CHH3-targeted dsRNA, both the level of Sp-CHH3 expression in the eyestalk ganglia and hemolymph glucose level decreased significantly. A further short-term starvation experiments demonstrated that, the level of Sp-CHH3 detected in the eyestalk ganglia was significantly up-regulated at the 12th h of starvation, it then fell back at the 24th h of starvation and subsequently remained relative stability between the 24th to 96th h of starvation. The hemolymph glucose level decreased significantly (P < .05) at each sampling time during the 96 h starvation duration when compared to that of 0 h (prior to starvation) and the overall trend was largely correlated with the level of Sp-CHH3 expression in the eyestalk ganglia. In summary, the results suggest that Sp-CHH3 plays a functional role in regulating carbohydrate metabolism in S. paramamosain.

Keywords: regulating carbohydrate; starvation; chh3; chh; physiology; carbohydrate metabolism

Journal Title: Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.