LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of polymer nanocomposites with enhanced mechanical properties using hybrid of graphene and partially wrapped multi-wall carbon nanotube as nanofiller

Photo by madhatterzone from unsplash

Abstract Triblock copolymer of poly(p-dioxanone) and polyethylene glycol end-capped with pyrene moieties ((Py-PPDO)2-b-PEG) was synthesized and used as modifier for multi-wall carbon nanotubes (MWCNTs). Nano-aggregates ((Py-PPDO)2-b-PEG@MWCNTs) with shish-kebab like partially… Click to show full abstract

Abstract Triblock copolymer of poly(p-dioxanone) and polyethylene glycol end-capped with pyrene moieties ((Py-PPDO)2-b-PEG) was synthesized and used as modifier for multi-wall carbon nanotubes (MWCNTs). Nano-aggregates ((Py-PPDO)2-b-PEG@MWCNTs) with shish-kebab like partially wrapped morphology and very good stability were obtained by incorporating the copolymer with MWCNTs. The bare MWCNT sections of (Py-PPDO)2-b-PEG@MWCNTs were able to induce π–π interactions with graphene (GE) and resulted in a novel GE/(Py-PPDO)2-b-PEG@MWCNTs hybrid. The dispersity of GE in solution or polymer matrix was therefore greatly improved. The PCL nanocomposite films using GE/(Py-PPDO)2-b-PEG@MWCNTs as hybrid nanofiller exhibited obviously improved mechanical properties especially at very low hybrid nanofiller content. The influence of the nanofiller content and feed ratio of GE/MWCNTs on the mechanical properties of composites films was evaluated. When the feed ratio of GE to MWCNTs is 2:8 and the total loading of nanofiller is only 0.01 wt%, the tensile strength of the composite film increased by 163% and the elongation at break increased by 17% compared to those of neat PCL. These results can be attributed to fine dispersion of the nanofillers in PCL matrix and the hybrid interactions between GE and MWCNTs. Therefore, this work provides a novel method for preparing polymer nanocomposites with high mechanical performance and low nanofiller loading.

Keywords: multi wall; nanofiller; polymer; wall carbon; mechanical properties; ppdo peg

Journal Title: Chinese Chemical Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.