Abstract The lithium metal silicates (Li2MSiO4) (where M = Mn, Fe, and Co) have a great potential in rechargeable lithium ion batteries as polyanion cathodes, due to the immanent merits such as… Click to show full abstract
Abstract The lithium metal silicates (Li2MSiO4) (where M = Mn, Fe, and Co) have a great potential in rechargeable lithium ion batteries as polyanion cathodes, due to the immanent merits such as superior electrochemical properties, low cost, and abundance. However, these merits are suffered from lower electrical and ionic conductivities, owing to the effect of poor lithium ion extraction/insertion kinetics. By building hybrid architectures, the integrated composites may afford much promoting activities towards lithium ion batteries compared with the bare ones. Kinds of synthetic methods such as template method, sol-gel method, and hydrothermal method have been successfully applied to prepare lithium metal silicates based compounds and composite materials. In this review, we aim to present a general view of Li2MSiO4 for the recent progress. The relationship between nanoarchitectures and electrochemical performances is discussed. In the end, we also summarize the opportunities and challenges about Li2MSiO4 nanomaterials recently.
               
Click one of the above tabs to view related content.