LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes

Photo by julienlphoto from unsplash

Abstract Elongation factor 4 (EF4) is one of the highly conserved translational GTPases, whose functions are largely unknown. Structures of EF4 bound ribosomal PRE-translocation and POST-translocation complexes have both been… Click to show full abstract

Abstract Elongation factor 4 (EF4) is one of the highly conserved translational GTPases, whose functions are largely unknown. Structures of EF4 bound ribosomal PRE-translocation and POST-translocation complexes have both been visualized. On top of cellular, structural, and biochemical studies, several controversial models have been raised to rationalize functions of EF4. However, how EF4 modulates elongation through its interactions with ribosomes has not been revealed. Here, using single-molecule fluorescence resonance energy transfer assays, we directly captured short-lived EF4·GTP bound ribosomal PRE and POST translocation complexes, which may adopt slightly different conformations from structures prepared using GDP, GDPNP, or GDPCP. Furthermore, we revealed that EF4·GTP severely impairs delivery of aminoacyl-tRNA into the A-site of the ribosome and moderately accelerates translocation. We proposed that functions of EF4 are to slow overall elongation and to stall majority of ribosomes in POST states under stress conditions.

Keywords: molecule fret; translocation; single molecule; elongation factor

Journal Title: Chinese Chemical Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.