LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antibiotic enhanced dopamine polymerization for engineering antifouling and antimicrobial membranes

Photo by maxberg from unsplash

Abstract In this work, we adopt a new tobramycin (TOB)-dopamine coating system to endow thin film composite membranes with excellent antifouling and antimicrobial properties. Combining the hydrophilic and antibiofouling properties… Click to show full abstract

Abstract In this work, we adopt a new tobramycin (TOB)-dopamine coating system to endow thin film composite membranes with excellent antifouling and antimicrobial properties. Combining the hydrophilic and antibiofouling properties of both TOB and polydopamine, the TOB-dopamine modified membrane exhibits improved antifouling and antimicrobial properties compared with the conventional dopamine modified and unmodified membranes. The TOB-dopamine system has two advantages over the conventional modification with dopamine and tris buffer solution. First, TOB-dopamine modification is more efficient than the conventional dopamine modification due to the accelerating effect of TOB on dopamine polymerization. Second, the TOB-dopamine modified membranes exhibit better hydrophilicity, and enhanced antifouling and antimicrobial properties than the conventional dopamine modified membrane. Beyond engineering membranes, the proposed TOB-dopamine system can also be extended for wider surface hydrophilic and antimicrobial modifications.

Keywords: dopamine; antifouling antimicrobial; tob dopamine; dopamine polymerization; dopamine modified

Journal Title: Chinese Chemical Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.