LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial donor/acceptor architecture for intramolecular charge-transfer emitter

Photo from wikipedia

Abstract Charge transfer via electron hopping from an electron donor (D) to an acceptor (A) in nanoscale, plays a crucial role in optoelectronic materials, such as organic light-emitting diodes (OLEDs)… Click to show full abstract

Abstract Charge transfer via electron hopping from an electron donor (D) to an acceptor (A) in nanoscale, plays a crucial role in optoelectronic materials, such as organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). Here, we propose a strategy for binding D/A units in space, where intramolecular charge-transfer can take place. The resulted material DM-Me-B is able to give bright emission in this molecular architecture because of the good control of D/A interaction and conformational rigidity. Moreover, DM-Me-B presents small singlet-triplet splitting energy, enabling thermally activated delayed fluorescence. Therefore, the DM-Me-B exhibits ∼20 % maximum external quantum efficiency and low efficiency roll-off at 1000 cd/m2, certifying an effective strategy in controlling D/A blocks through space.

Keywords: intramolecular charge; donor acceptor; charge; charge transfer

Journal Title: Chinese Chemical Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.