Abstract Photoelectrochemical (PEC) technology is considered to be a promising approach for solar-driven hydrogen production with zero emissions. Bismuth vanadate (BiVO4) is a kind of photocatalytic material with strong photoactivity… Click to show full abstract
Abstract Photoelectrochemical (PEC) technology is considered to be a promising approach for solar-driven hydrogen production with zero emissions. Bismuth vanadate (BiVO4) is a kind of photocatalytic material with strong photoactivity in the visible light region and appropriate band gap for PEC water splitting. However, the solar-to-hydrogen efficiency (STH) of BiVO4 is far away from the 10% target needed for practical application due to its poor charge separation ability. Therefore, this review attempts to summarize the strategies for improving the photocurrent density and especially hydrogen production of BiVO4 materials through PEC techniques in the last three years, such as doping nonmetal and metal elements, depositing noble metals, constructing heterojunctions, coupling with carbon and metal-organic framework (MOF) materials to further enhance the PEC performance of BiVO4 photoanode. This review aims to serve as a general guideline to fabricate highly efficient BiVO4-based materials for PEC water splitting
               
Click one of the above tabs to view related content.