Abstract A novel GO modified g-C3N4 nanosheets/flower-like BiOBr hybrid photocatalyst is fabricated by a facile method. The characterization results reveal that wrinkled GO is deposited between g-C3N4 nanosheets and flower-like… Click to show full abstract
Abstract A novel GO modified g-C3N4 nanosheets/flower-like BiOBr hybrid photocatalyst is fabricated by a facile method. The characterization results reveal that wrinkled GO is deposited between g-C3N4 nanosheets and flower-like BiOBr forming a Z-scheme heterojunction. As a mediator, plicate GO plays a positive role in prompting photogenerated electrons transferring through its sizeable 2D/2D contact surface area. The g-C3N4/GO/BiOBr hybrid displays a superior photocatalytic ability to g-C3N4 and BiOBr in photodegrading tetracycline (TC), whose removal efficiency could reach 96% within 2 h. Besides, g-C3N4/GO/BiOBr composite can reduce Cr(VI), and simultaneously treat TC and Cr(VI) combination contaminant under the visible light. The g-C3N4/GO/BiOBr ternary composite also exhibits satisfactory stability and reusability after four cycling experiments. Further, a feasible mechanism related to the photocatalytic process of g-C3N4/GO/BiOBr is put forward. This study offers a ternary hybrid photocatalyst with eco-friendliness and hopeful application in water pollution.
               
Click one of the above tabs to view related content.