LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory

Photo from wikipedia

Abstract Different from traditional metal-support heterogenous catalysts, inverse heterogeneous catalysts, in which the surface of metal is decorated by metal oxide, have recently attracted increasing interests owing to the unique… Click to show full abstract

Abstract Different from traditional metal-support heterogenous catalysts, inverse heterogeneous catalysts, in which the surface of metal is decorated by metal oxide, have recently attracted increasing interests owing to the unique interfacial effect and electronic structure. However, a deep insight into the effect of metal-oxide interaction on the catalytic performance still remains a great challenge. In our work, an inverse hematite/palladium (Fe2O3/Pd) hybrid nanostructure, i.e., the active Fe2O3 ultrathin oxide layers partially covering on the surface of Pd nanoparticles (NPs), exhibited superior electrocatalytic performance towards methanol oxidation reaction (MOR) as compared to the bare Pd NPs based on density functional theory calculation. The charge could transfer from Pd to Fe2O3 driven by the built-in potential at the interface of Pd and Fe2O3, which favors the downshift of d band center of Pd. With the assistance of interfacial hydroxyl OH*, the cleavage of O–H and C–H in CH3OH could take place much easily with lower barrier energy on Fe2O3/Pd than that on pure Pd via two electrons transferring reaction pathways. Our results highlight that the synergy of Pd and Fe2O3 at the interface could facilitate the electrochemical transformation of methanol into formaldehyde assisted with interfacial hydroxyl OH*.

Keywords: electrochemical transformation; metal; based density; density functional; metal support; functional theory

Journal Title: Chinese Chemical Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.