LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NiCo2O4 hollow microsphere–mediated ultrafast peroxymonosulfate activation for dye degradation

Photo by nilsynils from unsplash

Abstract Morphology and dispersity are key factors for activating peroxymonosulfate (PMS). In this study, we designed a recyclable open-type NiCo2O4 hollow microsphere via a simple hydrothermal method with the assistance… Click to show full abstract

Abstract Morphology and dispersity are key factors for activating peroxymonosulfate (PMS). In this study, we designed a recyclable open-type NiCo2O4 hollow microsphere via a simple hydrothermal method with the assistance of an NH3 vesicle. The physical structure and chemical properties were characterized using techniques such as scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), N2 adsorption and X-ray photoelectron spectroscopy (XPS). The test results confirm that the inner and outer surfaces of open-type NiCo2O4 hollow-sphere can be efficiently utilized because of the hole on the surface of the catalyst, which can minimize the diffusion resistance of the reactants and products. Under optimized conditions, the total organic carbon (TOC) removal efficiency of rhodamine B (RhB) can reach up to 80% in 40 min, which is almost 50% shorter than the reported values. The reactive radicals were identified and the proposed reaction mechanism was well described. Moreover, the disturbances of HCO3−, NO3−, Cl− and H2PO4− were further investigated. As a result, HCO3− and NO3− suppressed the reaction while Cl− and H2PO4− had a double effect on reaction.

Keywords: hollow microsphere; mediated ultrafast; ultrafast peroxymonosulfate; nico2o4 hollow; microsphere mediated

Journal Title: Chinese Chemical Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.